Amplification of the gene for SCAP, coupled with Insig-1 deficiency, confers sterol resistance in mutant Chinese hamster ovary cells.
نویسندگان
چکیده
The endoplasmic reticulum membrane proteins Insig-1 and Insig-2 limit cholesterol synthesis, in part through their sterol-dependent binding to sterol-regulatory element binding protein (SREBP) cleavage-activating protein (SCAP). This binding prevents proteolytic processing of SREBPs, membrane-bound transcription factors that enhance cholesterol synthesis. We report here the characterization of mutant Chinese hamster ovary (CHO) cells, designated SRD-19, that are resistant to 25-hydroxycholesterol, a potent inhibitor of SREBP processing. SRD-19 cells were produced by mutagenesis of Insig-1-deficient SRD-14 cells, followed by selection in high levels of 25-hydroxycholesterol. 25-Hydroxycholesterol fails to suppress SREBP processing in SRD-19, even though they express normal levels of Insig-2. The number of copies of the gene encoding SCAP was found to be increased by 4-fold in SRD-19 cells compared with wild-type CHO cells, leading to the overproduction of SCAP mRNA and protein. Our data indicate that overproduced SCAP saturates the remaining Insig-2 in SRD-19 cells, thus explaining their resistance to 25-hydroxycholesterol. Consistent with this conclusion, regulated SREBP processing is restored in SRD-19 cells upon transfection of plasmids encoding either Insig-1 or Insig-2. These results highlight the importance of SCAP/Insig ratios in normal sterol-regulated processing of SREBPs in cultured cells.
منابع مشابه
Isolation of sterol-resistant Chinese hamster ovary cells with genetic deficiencies in both Insig-1 and Insig-2.
Insig-1 and Insig-2, a pair of endoplasmic reticulum (ER) membrane proteins, mediate feedback control of cholesterol synthesis through their sterol-dependent binding to the following two polytopic ER membrane proteins: sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Sterol-induced binding of Insigs to SCAP...
متن کاملThree mutations in sterol-sensing domain of SCAP block interaction with insig and render SREBP cleavage insensitive to sterols.
We report the isolation and characterization of a new line of mutant Chinese hamster ovary cells, designated SRD-5, that are resistant to 25HC, a potent suppressor of cleavage of sterol regulatory element-binding proteins (SREBPs) in mammalian cells. In SRD-5 cells, SREBPs are cleaved constitutively, generating transcriptionally active nuclear SREBP even in the presence of sterols. Sequence ana...
متن کاملFailure to cleave sterol regulatory element-binding proteins (SREBPs) causes cholesterol auxotrophy in Chinese hamster ovary cells with genetic absence of SREBP cleavage-activating protein.
We describe a line of mutant Chinese hamster ovary cells, designated SRD-13A, that cannot cleave sterol regulatory element-binding proteins (SREBPs) at site 1, due to mutations in the gene encoding SREBP cleavage-activating protein (SCAP). The SRD-13A cells were obtained by two rounds of gamma-irradiation followed first by selection for a deficiency of low density lipoprotein receptors and seco...
متن کاملSterol Resistance in CHO Cells Traced to Point Mutation in SREBP Cleavage–Activating Protein
Through expression cloning we have isolated a cDNA-encoding SREBP cleavage-activating protein (SCAP), which regulates cholesterol metabolism by stimulating cleavage of transcription factors SREBP-1 and -2, thereby releasing them from membranes. The cDNA was isolated from Chinese hamster ovary cells with a dominant mutation that renders them resistant to sterol-mediated suppression of cholestero...
متن کاملCrucial Step in Cholesterol Homeostasis Sterols Promote Binding of SCAP to INSIG-1, a Membrane Protein that Facilitates Retention of SREBPs in ER
Using coimmunoprecipitation and tandem mass spectrometry, we identify INSIG-1 as an ER protein that binds the sterol-sensing domain of SREBP cleavage-activating protein (SCAP) and facilitates retention of the SCAP/SREBP complex in the ER. In sterol-depleted cells, SCAP escorts SREBPs from ER to Golgi for proteolytic processing, thereby allowing SREBPs to stimulate cholesterol synthesis. Sterols...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 48 9 شماره
صفحات -
تاریخ انتشار 2007